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Linkage Disequilibrium and Gene Mapping: An Empirical Least-Squares
Approach
Laura C. Lazzeroni*

Department of Statistics, Stanford University, Stanford, CA

Summary

This paper proposes a novel approach for fine-scale
mapping of disease genes that is based on the well-
known linkage-disequilibrium parameter d. Using a very
simple, very general model, I show how d can be inter-
preted in terms of identity-by-descent probabilities. The
value of d follows a piecewise curve along the chro-
mosome, with the maximum occurring at the disease
locus where the two pieces intersect. A semiparametric,
multilocus approach is used to fit this nonlinear regres-
sion curve in order to estimate the gene location. Using
the bootstrap to empirically estimate much of the prob-
ability model from the data avoids the need for many
detailed population assumptions. One advantage of the
approach is its use of the observed covariance structure
of the data, which can be highly informative as to the
gene location. I illustrate the method on the cystic fi-
brosis data of Kerem et al.

Introduction

Marker loci near a disease gene are often observed to
be in linkage disequilibrium with the disease; that is, the
relative frequencies of marker alleles in affected individ-
uals differ from those in the general population. Linkage
disequilibrium occurs because each new disease-predis-
posing mutation originally appears on a single chro-
mosome. Individuals who inherit a disease mutation are
likely to also inherit the alleles of the original chromo-
some, at neighboring marker loci. As generations pass,
recombination or mutation can disrupt the joint trans-
mission of disease mutation and marker allele. Because
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recombination with the disease gene happens less often
for nearby marker loci, markers in the immediate vicinity
of the gene should remain in greater disequilibrium than
more distant marker loci.

This paper proposes a new multilocus method for fine-
scale genetic mapping using linkage-disequilibrium data.
The method is intended for genes that, through family-
based linkage analysis, have already been mapped to a
particular interval of a chromosome. In theory, dise-
quilibrium mapping can further shorten that interval,
reducing the remaining cost and effort needed to clone
the gene (Jorde 1995). Because each observation rep-
resents several historical meioses, linkage-disequilibrium
data can provide more opportunities for recombination
on a short interval than are provided by pedigree data.
This effectively increases the sample size and should
make it easier to construct fine-scale maps. On the other
hand, the choice of the probability model used for link-
age-disequilibrium mapping is less clear than it is for
linkage analysis. For linkage, the model can be greatly
simplified by conditioning on the known pedigree struc-
ture. In contrast, the distant relationships on which link-
age-disequilibrium mapping implicitly depends are
unobserved.

One approach for linkage disequilibrium is to use
methods, such as the transmission/disequilibrium test
(TDT), that condition inference on parental genotypes.
Although conditioning controls against possible con-
founding by population admixture, it also ignores in-
formation contained in the parental genotype distribu-
tion. TDT methods are especially appropriate when one
is screening large numbers of loci or is seeking a con-
clusive verdict about the simultaneous presence of link-
age and linkage disequilibrium (Lazzeroni and Lange, in
press). Once linkage has been established, it can be pref-
erable to ignore the issue of confounding and to use all
information available for localizing the gene.

Previously, fine-scale linkage-disequilibrium mapping
has followed one of three general strategies. The simplest
approach is to examine each locus individually. The gene
is mapped relative to a locus that provides strong evi-
dence of linkage disequilibrium. For a review of several
disequilibrium measures used for this purpose, see the
work of Devlin and Risch (1995). A second approach,
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haplotype analysis, uses multilocus data to identify part
of the chromosome where many affected individuals
share a common haplotype. Haplotype analysis often
relies more on the geneticist’s intuition and less on for-
mally defined procedures. In practice, geneticists often
use both single-locus analysis and haplotype analysis to
search for a gene (e.g., see Hästbacka et al. 1994; God-
dard et al. 1996). Recently, several authors have ex-
plored a third approach, in which likelihood analysis is
applied to multilocus data. In contrast to haplotype anal-
ysis, likelihood analysis requires an explicit probability
model for the data. Some likelihood methods (Ramsay
et al. 1993; Hill and Weir 1994; Kaplan et al. 1995;
Xiong and Guo 1997) have formalized aspects of hap-
lotype analysis, with the goal of determining the relative
order of the disease gene and a pair of marker loci. Other
methods (Terwilliger 1995; Devlin et al. 1996; Xiong
and Guo 1997) depend on likelihoods for single-locus
linkage-disequilibrium data, combining these likelihoods
by multiplication for larger numbers of loci.

The present paper describes a somewhat different mul-
tilocus strategy. It takes the view that the pattern of
disequilibrium along the chromosome is more inform-
ative than the amount of disequilibrium. From this per-
spective, linkage-disequilibrium mapping is a regression
or curve-fitting problem. The semiparametric method
used to estimate the regression curve and corresponding
gene location includes a novel application of the boot-
strap, which replaces many detailed population
assumptions.

Below, the section “A Model for Disequilibrium” de-
velops a general expression for the well-known param-
eter d in terms of identity-by-descent probabilities. This
interpretation makes explicit the requisite underlying in-
dependence assumptions implied by stricter population-
genetics models. Because of the simplicity of the deri-
vation, it is possible to give very general conditions under
which it holds. With this expression, d can be written
as a piecewise function of the position of the marker
locus on the chromosome. The maximum value of d

occurs at the disease locus, where the two pieces of the
curve intersect. Many different sets of detailed popula-
tion assumptions lead to this same general pattern of
linkage disequilibrium.

Subsequently, the section “Statistical Methods” tells
how to estimate the gene location by use of an empirical
least-squares strategy. The regression model above de-
scribes the value of d as a function of the position of the
marker locus on the chromosome. However, the model
says nothing about the sampling properties of estimates
of d at a set of loci. Using the bootstrap to explore the
joint sampling distribution of these statistics, one can
obtain (1) a transformation that normalizes their dis-
tributions, (2) adjustments that remove possible bias,
and (3) an estimate of their covariance structure. The

bootstrap results are used to fit the proposed curve to
the transformed, adjusted estimates, in order to estimate
the gene location. Kerem et al.’s (1989) cystic fibrosis
(CF) data illustrate the statistical methods and give in-
sight into the nature of linkage-disequilibrium data.

A Model for Disequilibrium

Classifying chromosomes according to “disease” (D)
or “normal” (N) status is the first step in developing a
linkage-disequilibrium model. Of course, if the gene has
not yet been cloned, it is impossible to know with cer-
tainty whether a disease mutation is present. Instead,
this paper defines chromosomes that segregate with in-
dividual disease status to be “disease” chromosomes and
defines “normal” chromosomes analogously. For a re-
cessive disease, for example, both chromosomes from an
affected individual are considered to be “disease” chro-
mosomes. Both untransmitted chromosomes from that
person’s unaffected parents are considered to be “nor-
mal” chromosomes. In some cases, it is possible to refine
this classification scheme, discarding ambiguous cases in
order to enrich the “disease” chromosomes for the pres-
ence of ancestral mutations, relative to the “normal”
chromosomes. Although chromosomes are classified in
terms of observable status rather than in terms of the
actual presence of a mutation, for convenience the quo-
tation marks will be omitted. Because of heterogeneity,
incomplete penetrance, and other factors, normal chro-
mosomes, as defined here, can actually carry a disease
mutation while disease chromosomes might not.

The model presented here depends on d, a well-
known linkage-disequilibrium measure first intro-
duced in this context by Bengtsson and Thomson
(1981). Another name for d that has appeared in the
literature is “ ” (Lehesjoki et al. 1993). SupposePexcess

that , where is the prob-P (A d D) x P(A d N) P (A d D)
ability that a disease chromosome carries marker allele
A and where is the probability that a normalP (A d N)
chromosome carries A. For such an allele, the parameter
d is defined to be

P(A d D) � P(A d N)
d � .

1 � P(A d N)

By definition, , with larger values indicating0 X d X 1
greater disequilibrium. Devlin and Risch (1995) point
out a major advantage that d has over most other meas-
ures of linkage disequilibrium. Because d is a function
of the two conditional probabilities, andP (A d D)

, it can be estimated from so-called case-controlP (A d N)
data consisting of separate samples of disease and nor-
mal chromosomes.

Completing the definition of d for multiallelic loci
requires that A be specified more precisely. In the fol-
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lowing subsection, “An Interpretation of d”), A rep-
resents a set of distinct alleles. This set has a higher
probability of being represented on a disease chro-
mosome than on a normal chromosome. Let a be the
complementary composite allele consisting of the re-
maining alleles at the same locus. Thus, P(a d D) �

, and . A useful,1 � P(A d D) P(a d N) � 1 � P(A d N)
equivalent definition of d is

P(a d N) � P(a d D)
d �

P(a d N)

P(a d D)
� 1 � .

P(a d N)

An Interpretation of d

A general expression for d can be written in terms of
identity-by-descent probabilities. Suppose that disease-
predisposing mutations were introduced into the pop-
ulation on one or more ancestral chromosomes. By as-
sumption, many disease chromosomes today are de-
scended, at the disease locus, from one of these ancestral
founder chromosomes. For a given marker locus, let A
be the composite allele consisting of all alleles present
at the marker locus on at least one founder chromosome.
Let a be the complementary composite allele consisting
of the remaining alleles at that locus.

I now extend the definition of identity by descent at
a single locus, in order to apply it to the interval between
two loci. In this setting, when the three following con-
ditions are met, a present-day chromosome and a foun-
der chromosome are said to be identical by descent along
the interval between the marker and the disease locus.
(1) The interval on the former chromosome is a direct
descendant of the same interval on the latter chromo-
some. (2) There has been no recombination anywhere
on the interval in any intervening generation. (3) There
has been no mutation at either of the two end loci in
any intervening generation.

Let and be the probability of iden-P (I d D) P (I d N)
tity by descent along the mutation-marker interval,
for disease and normal chromosomes, respectively. All
such chromosomes carry a copy of allele A at the
marker locus, by definition. If it is assumed that all
remaining chromosomes have the same probability,
say , of carrying marker allele a, it followsP (a d not I)
that

P(a d D) � P(a d not I)[1 � P(I d D)]

and

P(a d N) � P(a d not I)[1 � P(I d N)] .

Consequently,

P(a d N) � P(a d D)
d �

P(a d N)

P(I d D) � P(I d N)
� .

1 � P(I d N)

Note that d depends on the marker locus only through
the interval-identity-by-descent probabilities and not
through the allele probabilities at the marker locus. For
a rare disease, is negligible and d is equivalentP (I d N)
to the probability that a disease chromosome is identical
by descent, along the interval between the marker and
the disease locus, to one of the founder chromosomes.
When is not negligible, application of the Tay-P (I d N)
lor series expansion, n1/ (1 � x) � 1 � x � ) � x �

for , yields the approximationn�1O (x ) FxF ! 1

P(I d D) � P(I d N)
d �

1 � P(I d N)

[ ]≈ P(I d D) � P(I d N)
J j[ ]# 1 �� P(I d N) .j�1

Let and be the probability of iden-P (M d D) P (M d N)
tity by descent for the mutation among disease and nor-
mal chromosomes, respectively. Let be the con-P (I d M)
ditional identity-by-descent probability for the interval,
given identity by descent for the mutation, under the
further assumption of conditional independence of dis-
ease status. It follows that P(I d D) � P(M d D)P(I d M)
and that . After substitutionP(I d N) � P(M d N)P(I d M)
into d, these yield

[ ]d ≈ P(I d M) P(M d D) � P(M d N)
J j j[ ]# 1 �� P(M d N) P(I d M) ;j�1

(1)

that is, d can be approximated by a low-degree poly-
nomial function of P(IFM).

The d Curve

Here standard approximations are used to express
as a function of the physical distance betweenP (I d M)

the marker locus and the disease mutation. Combining
this result with equation (1) yields a regression curve
describing the pattern of d relative to the mutation site.

First suppose that the disease mutation appeared on
a single founder chromosome G generations ago. Let t

be the probability that no mutation occurred at the
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marker locus in the intervening G generations. Let v be
the recombination fraction between the marker locus
and the disease mutation. Then,

GP(I d M) � t(1 � v)

J G j( )≈ t � t� �v , (2)j�1 ( )j

where

( ) ( )G # G � 1 # ... # G � j � 1
G � .( )j ( )j # j � 1 # ... # 1

The binomial approximation in equation (2) is accu-
rate up to an error of the order of v . Under stricterJ � 1

assumptions, equation (2) implies that d � P(M d D)
, which is equivalent to the expression given byG(1 � v)

Lehesjoki et al. (1993). Suppose now that there are mul-
tiple founder chromosomes. Let pk be the conditional
probability that a chromosome inherits the mutation
from the kth founder, given that it inherits some founder
mutation. Let Gk be the number of generations since the
kth founder, and let tk be the probability of no marker
mutation in Gk generations. Then,

GkP(I d M) � � p t (1 � v)k k k

J G jk ( )≈ � p t �� p t � �v .k k k k k k j�1 ( )j

(3)

Next, let y be the distance between the marker locus
and the mutation site, measured in Morgans. Simple
Taylor-series expansions of most mapping functions in
the genetics literature (Ott 1991) have the general form

J jv ≈ y �� b y , (4)j�2 j

where bj is a constant for . For example, underj � 2, ) , J
Morgan’s mapping function, in which there is complete
positive chiasma interference, . Under Haldane’sv � y
mapping function, in which there is no chiasma
interference,

1 � exp (�2y)
v �

2
2≈ y � y .

The implicit assumption here—that v is a monotonically
increasing function of genetic distance—could fail only
if there were very strong negative interference. In hu-
mans, interference is generally thought to be positive.

Last, let x be the physical location of the marker locus,
and let m be the site of the disease-predisposing muta-

tions. An implicit assumption underlying virtually all
linkage-disequilibrium mapping is that genetic and phys-
ical distance are roughly proportional on the region
spanned by the observed marker loci; that is,

F Fy ≈ b x � m (5)

for some constant b.
When equations (1), (3), (4), and ( 5) are combined

by substitution, d can at last be approximated by

J jF Fg(x) � � b x � m . (6)j�0 j

To avoid unneeded detail, g(x) is written as a generic
polynomial in . Each coefficient bj,Fx � mF j � 0, ) , J,
is an unknown constant incorporating various terms in
the derivation. Along the chromosome, this approxi-
mation of d follows a piecewise polynomial curve that
is symmetric about the mutation site, where the two
pieces intersect. A small value of J gives a reasonable
degree of accuracy, because of the small amount of error
introduced at each step of the approximation. In view
of the monotonic nature of each approximated function,
d is a decreasing function of . Thus, g(x) shouldFx � mF
also be a decreasing function of on the rangeFx � mF
requiring an accurate approximation.

What if the disease gene lies near a hotspot of in-
creased recombination activity? In that case, the region
of increased activity has a greater genetic length than
would be suggested by its physical length, violating the
proportionality assumption. Within such a region, the
curve descends more quickly than would otherwise be
the case, altering the coefficients—and, possibly, the de-
gree—of the best-fitting polynomial approximation. A
region of decreased activity leads to similar distortion.
Of course, it is unlikely that the distortion on one side
of the gene will mirror that on the other. Thus, I propose
an asymmetric model in which the curve

J jF Fb �� b x � m , if x X m0 j�1 1j

g(x) � (7){ J jF Fb �� b x � m , if x 1 m0 j�1 2j

is composed of two distinct polynomials that intersect
at the mutation site. As before, b0 and bij are unknown
constants for and , and g(x) is con-i � 1, 2 j � 1, ..., J
strained to decrease as increases on each side ofFx � mF
m. Asymmetry has a historical interpretation as well as
a biological one. It can reflect the widespread propa-
gation of individual recombination events that occurred
during the early history of a mutation.

Implications of the Model

The model above is quite general. It does not depend
on a formal stochastic model for the development of the
population. Instead, the derivation proceeds backward
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Table 1

CF Data for 23 Marker Loci

i xi d̂i P � SEˆf(d )i

1 0 .419 .722 � .063
2 9 .674 .511 � .144
3 24.8 .246 .844 � .086
4 524.8 .465 .687 � .100
5 534.8 .520 .644 � .096
6 554.8 .431 .713 � .053
7 569.8 .415 .725 � .054
8 594.8 .586 .589 � .099
9 614.8 .763 .421 � .063
10 619.8 .771 .413 � .062
11 654.8 .767 .417 � .062
12 684.8 .786 .397 � .076
13 709.8 .779 .404 � .069
14 744.8 .786 .397 � .076
15 779.8 .796 .385 � .072
16 859.8 .693 .493 � .056
17 869.8 .701 .485 � .055
18 889.8 .551 .619 � .131
19 899.8 .784 .398 � .068
20 949.8 .667 .517 � .224
21 1,599.8 .273 .826 � .048
22 1,669.8 .340 .779 � .059
23 1,769.8 .316 .796 � .055

in time, using only a few conditional independence as-
sumptions. Specific population-genetics models typically
include stricter assumptions, such as random mating,
which lead to the same type of conditional independence.
The simplicity of the approach taken here makes it pos-
sible to simultaneously cover a number of complications,
including multiple alleles, multiple founders, disease het-
erogeneity, normal carriers, mutation, and chiasma in-
terference. The asymmetric curve further extends the
model, allowing the intensity of recombination activity
to vary with physical location.

The piecewise curve has some general implications for
linkage-disequilibrium mapping. Consider the simple
symmetric model with a single founder and . InJ � 1
that case,

[ ]( )d ≈ t P(M d D) � P(M d N) 1 � GbFx � mF .

Thus, , ,b � t [P(M d D) � P(M d N)] b � �b Gb0 1 0

and . To estimate the distanceFx � mF ≈ (d � b ) /b0 1

from the value of d at a single locus, the valuesFx � mF
of t, , , G, and b are needed. Inac-P (M d D) P (M d N)
curate assumptions or imprecise external estimates of
these population quantities carry over to the estimated
distance. Consequently, single-locus linkage-disequi-
librium mapping is rarely effective for precise gene
localization. Estimates of d at multiple loci can yield
estimates of b0 and b1. However, these alone will be
insufficient to determine underlying population val-
ues, such as . Finding such values requires as-P (M d D)
sumptions about other aspects of the population. For-

tunately, this is not a problem when one is estimating
the gene location. In fact, generic parameters, such as
b0, absorb the impact of incorrectly specified population
quantities, suggesting that multilocus disequilibrium
mapping can be robust to inaccurate population
assumptions.

Statistical Methods

To estimate the gene location, one can fit the piecewise
curve described above to estimates of d at a set of L
marker loci. The data consist of the haplotypes of one
sample of disease chromosomes and another sample of
normal chromosomes. The haplotypes should span the
region where the gene is believed to lie. Although the
method is easily modified to handle data collected sep-
arately at each locus, the ability to incorporate the ad-
ditional information in haplotype data is a major ad-
vantage of this approach. A map of the marker locations,
usually a work in progress at the time, is also needed.
This paper addresses estimation with biallelic markers
only.

Let di be the disequilibrium parameter at locus i. To
estimate di, let be the allele, at locus i, that is relativelyâi

more frequent in the normal sample than it is in the
disease sample. Thus, estimates which allele is asso-âi

ciated with normal status in the population. Among the
disease chromosomes typed at i, let pi be the proportion
with allele . Define ri similarly for the normal chro-âi

mosomes. The obvious estimate of di is . Ifd̂ � 1 � p /ri i i

is undefined because the allele frequencies are the sameâi

in both samples, .d̂ � 0i

The CF data originally published in Science (Kerem
et al. 1989) serve to illustrate the statistical methods.
Table 3 of the Science paper presents the haplotypes of
94 disease chromosomes from a sample of affected in-
dividuals, as well as the haplotypes of 92 untransmitted
normal chromosomes from their unaffected parents.
Complete haplotypes include 23 RFLP loci spanning
1,770 kb. Ninety chromosomes used in the analysis have
incomplete haplotypes.

Table 1 in the present paper shows the markers de-
veloped and mapped during the search for the CF gene
and reported in the Science paper. The locations are stan-
dardized so that xi is the number of kilobases between
the ith locus and the first locus, metD. The CF gene, as
shown on the Science map, extends from tox � 790

(rounded to the nearest 10 kb) and includesx � 990
loci 16–20. The CF mutation D508, present in 67% of
the affected sample, lies between andx � 880 x �

, between the 17th and 18th loci. In theory, linkage-885
disequilibrium mapping should point to this location.

The CF disequilibrium estimates (table 1 and fig. 1)
follow a decidedly irregular pattern. Of the eight loci
with estimates greater than .76, seven are clustered to-
gether just outside the gene. The remaining such locus
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Figure 1 Original s for CF data. Loci 9–15 (b) and 19 (e)d̂i

have high values and are highly correlated. Locus 18 (d) within the
gene has a much lower value. Loci 16 and 17 (c) are intermediate.
The estimate at locus 2 (a) is unusually high, given its distance from
the CF gene, which is denoted by the horizontal bar. The vertical
crosspiece represents the location of the D508 mutation.

is within the gene, very near D508. Four other loci inside
the gene have lower estimates, ranging from .55 to .70.
In contrast, is as high, although that locus isd̂ � .672

nearly 800 kb away from the gene. Its immediate neigh-
bors to either side show much less linkage dis-
equilibrium.

The Bootstrap

To accurately estimate the gene location, it is necessary
to understand the statistical properties of the s and theird̂i

relationship to the true unknown dis. A parametric model
for the joint sampling distribution of the statistics would
require a number of additional assumptions. An alter-
native is to use the empirical distribution based on the
observed data. The bootstrap is a statistical tool that,
by resampling the observed data, simulates the empirical
distribution of a statistic (Efron 1979).

The bootstrap distribution is obtained by randomly
sampling B separate bootstrap data sets, as follows. Let
m and n be the numbers of disease and normal chro-
mosomes, respectively, in the original data. To create
each bootstrap data set, m “bootstrap” disease chro-
mosomes are drawn randomly with replacement from
the m disease chromosomes in the original data. Simi-
larly, n “bootstrap” normal chromosomes are drawn
randomly with replacement from the n normal chro-
mosomes in the original data. Each chromosome is sam-
pled as a unit including all the typed alleles in its hap-
lotype and any missing data.

On the basis of the chromosomes in the bth bootstrap
data set, a bootstrap estimate is computed for each∗d̂ (b)i

locus i, in the same way as was computed on the basisd̂i

of the original data. Let be the allele that is more∗â (b)i

frequent among the normal chromosomes than the dis-
ease chromosomes of the bth bootstrap data set. Let

and be the proportions of allele among∗ ∗ ∗ˆp (b) r (b) a (b)i i i

the disease and the normal chromosomes, respectively,
in the bth data set. The bth bootstrap estimate at locus
i is . As in the original data,∗ ∗ ∗d̂ (b) � 1 � p (b) /r (b)i i i

if the frequencies in the disease and normal∗d̂ (b) � 0i

samples of the bth data set are the same.
Each bootstrap data set produces one set of estimates,

, on the basis of the same set of resampled∗ ∗ˆ ˆd (b), ) , d (b)1 L

chromosomes. The variability of these bootstrap esti-
mates tells us about the variability of . Becauseˆ ˆd , ..., d1 L

each bootstrap estimate is based on a sample from the
original data, it behaves as a statistical estimate of the
disequilibrium present in the original data; that is, each

is an estimate of , just as is an estimate of di.
∗ˆ ˆ ˆd (b) d di i i

By replicating the resampling process many times, one
can observe the random behavior of with respect to∗d̂i

. This bootstrap distribution provides an empirical es-d̂i

timate of the statistical behavior of with respect to di.d̂i

The following details are worth noting: (1) Because
of the resampling of missing values, the number of chro-
mosomes typed at a locus in a given bootstrap data set
can differ from the number typed in the original data.
(2) By chance, all resampled chromosomes in both sam-
ples of the bth bootstrap data set might share the same
allele at locus i; in that case, is undefined. (3) The∗d̂ (b)i

sampling distribution of depends partly on the prob-d̂i

ability that , the disease-associated allele in the originalâi

data, is not the same as ai, the disease-associated allele
in the population. The bootstrap replicates this feature,
since the disease-associated allele in the bth bootstrap
sample can, in turn, differ from . For the CF data,∗ˆ ˆa (b) ai i

this occurs at the 3rd locus, for 13% of the bootstrap
data sets, and at the 22nd locus, for 7% of the bootstrap
data sets. Five other loci behave similarly, at rates no
greater than 2%.

Normalizing Transformation

The generalized least-squares procedure used to esti-
mate the regression curve and corresponding mutation
site works best if the data come from a symmetric dis-
tribution, such as the normal distribution (Seber and
Wild 1989). The bootstrap distribution can be used to
check how close the observed s are to normality. Ford̂i

the CF data, I resampled bootstrap data setsB � 2, 000
and calculated the skewness of the resulting 2,000 boot-
strap estimates, at each locus. The bootstrap estimates
at all loci except one are negatively skewed.

An appropriate transformation of can reduce thed̂i

apparent asymmetry. The same transformation is used
for all loci. For CF, I considered transformations of the
form and , for various values ofg gf(d) � d f(d) � (1 � d)
g. I used each candidate to transform the bootstrap es-
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Table 2

Summary of Bootstrap Skewness for 23 Loci

TRANSFORMATION

SKEWNESS

Minimum Median Mean Maximum

d �.88 �.29 �.36 .08
d1.3 �.56 �.22 �.18 .41
d1.4 �.47 �.19 �.12 .51
d1.5 �.39 �.17 �.07 .61
d1.6 �.32 �.13 �.02 .71

.4(1 � d) �.91 �.11 �.14 .20

.5(1 � d) �.41 �.05 �.04 .29

.6(1 � d) �.22 �.01 .05 .37

.7(1 � d) �.18 .08 .13 .46

NOTE.—The top row shows values for the 23 loci as estimated
by the bootstrap for the untransformed estimate; the remaining
rows show the same quantities for eight possible transformations.

timates and then recalculated the skewness at each locus.
Table 2 summarizes the results. Although no perfect
transformation eliminates the asymmetry at all loci, the
selected transformation reduces the max-.6f(d) � (1 � d)
imum absolute skewness at any locus, from .88 to .37.
It also sets the median and mean skewness close to zero.
Applying this transformation to the original estimates
yields the values in table 1.

Does this transformation change the form of the
model? If d is a polynomial in , say g′(x), thenFx � mF

. Thus,.6 ′ ′ 2 .6(1 � d) ≈ 1 � .6g (x) � .12g (x) � .... (1 � d)
can still be approximated by g(x), where g(x) is another
polynomial in . Because is a decreasing.6Fx � mF (1 � d)
function of d, g(x) now increases as increases,Fx � mF
and lower values correspond to greater disequilibrium.
Except for this change in direction, either the symmetric
model in equation (6) or the asymmetric model in equa-
tion (7) should still hold. In principle, the same is true
for any transformation f(d) that is a smooth, finite, mon-
otonic function on the [0,1] interval.

It is possible that the transformed estimate is aˆf(d )i
biased estimate of f(di). The bootstrap provides an es-
timate of the bias, which can then be removed; for de-
tails, see the Appendix. Let be the bias-corrected ver-f̂i

sion of the transformed estimate .ˆf(d )i

Covariance

The primary motivation for using the bootstrap is to
estimate the covariance matrix of the transformed dis-
equilibrium estimates. The bootstrap-estimated covari-
ance matrix plays an important role both in efficiently
estimating the gene location and in constructing a con-
fidence interval to describe the accuracy of that estimate.

Because the transformed estimates at different loci are
based on the same set of chromosomes, they are clearly
correlated. In fact, the feasibility of linkage-disequilib-
rium mapping may depend on the presence of such cor-
relation. Contrary to a common misconception, corre-
lated data can sometimes yield better estimates than are
provided by uncorrelated data; in linear regression, for
example, positive correlation increases the variance of
the intercept estimate but reduces the variance of the
slope estimate. In fact, under some circumstances, two
perfectly correlated observations are sufficient for the
slope of a line to be estimated with complete certainty.
For linkage-disequilibrium mapping, the consequences
of correlated data are less clear.

The covariance structure of a set of disequilibrium
estimates probably reflects several historical factors, in-
cluding variable mutation rates, population admixture,
and multiple founder haplotypes. The variances of the
estimates at individual loci depend on the allele fre-
quencies in the disease chromosomes and in the normal
chromosomes. Correlations occur between pairs of es-

timates if there is linkage disequilibrium between the two
marker loci in either group. Both CF samples, in fact,
exhibit very high levels of linkage disequilibrium be-
tween some markers. In any given setting, it is difficult
to design a population model that generates a covariance
structure similar to the true one. The empirical covari-
ance matrix of the transformed estimates is a readily
available alternative that can be estimated from the
transformed bootstrap estimates; for details, see the
Appendix.

Table 1 shows the bootstrap-estimated standard error
(SE) values of the transformed CF estimates. The large
range, .048 to .224, shows that f(di) has been much better
estimated at some loci than at others. Ten pairwise cor-
relations are at least .9, and 53 are greater than .5. These
strongly correlated pairs typically consist of either neigh-
boring markers or markers that are both close to the
disease gene. However, there are several exceptions to
this anticipated pattern.

Loci 9–15 and 19 form an interesting example. The
estimated disequilibrium at these eight loci is greater
than that at all other loci. The pairwise correlations
among the eight are all also high, ranging from .68 to
1.00. In contrast, the estimate at the 18th locus, which
shows much less disequilibrium, is negatively correlated
(between �.19 and �.09) with the eight previous esti-
mates. The estimates at the 16th and 17th loci are mod-
erately correlated (between .52 and .65) with all nine
previous estimates. A possible explanation may be that,
as suggested by Kerem et al. (1989), two distinct hap-
lotypes are segregating with D508. The two haplotypes
proposed by those authors agree at loci 9–15, differ at
loci 16–18, and agree again at locus 19.

Estimating the Gene Location

The gene location m can now be estimated by use of
generalized least squares (GLS), to find the best-fitting
curve under each plausible model of the general class
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Table 3

Results for the CF Data

Model ˆˆQ(m,b) pa ˆˆQ(m,b) � 2p m̂

Symmetric:
J � 1 40.18 3 46.18 790.0
J � 2 39.51 4 47.51 796.0
J � 3 39.51 5 49.51 796.0

Asymmetric:
J � 1 37.82 4 45.82 892.6
J � 2 35.12 6 47.12 899.8
J � 3 35.03 8 51.03 899.8

NOTE.—For these data, AIC chooses the asymmetric
model with .J � 1

a For symmetric models, ; for asymmetricp � J � 2
models, .p � 2 � 2J

Figure 2 Fitted curves. The unbroken line is the fitted curve
under the final first-order asymmetric model, and the broken line is
the fit under the second-order asymmetric model. The points are the
observed, transformed disequilibrium estimates. As can be seen, the
greatest deviation between the two curves occurs within the large gap
between the 20th and 21st markers. Both curves place the gene location
very close to the vertical dashed line showing the location of D508.
The horizontal crosspiece represents the entire CF gene.

suggested above in the section “A Model for Disequi-
librium.” The final model, selected by comparison of the
GLS results, yields an estimate and confidence interval
for m. The following are the underlying assumptions: For
locus , the transformed, bias-corrected esti-i � 1, ..., L
mate is an unbiased estimate of f(di). The value of f(di)f̂i

can be approximated by g(xi), where g(x) is given by
either the symmetric curve

J jF Fg(x) � � b x � mj�0 j

or the asymmetric curve

J jF Fb �� b x � m , if x X m0 j�1 1j

g(x) � .{ J jF Fb �� b x � m , if x 1 m0 j�1 2j

In addition, m satisfies the range constraint c X m XL

for constants cL and cU, chosen on the basis of priorcU

information about the gene location. The defaults
and keep the location estimate withinc � x c � xL 1 U L

the span of the observed markers. For another constant,
cM, g(x) satisfies the monotonicity constraint on each side
of the mutation. If f(d) is a decreasing (increasing) func-
tion of d, g(x) is an increasing (decreasing) function of

, on the range . By default,Fx � mF Fx � mF X c c �M M

, forcing the curve on each side of m to be mon-x � xL 1

otonic across the observed range of the markers for any
possible m. Last, the covariance matrix of is consis-f̂i

tently estimated by V, the smoothed bootstrap covari-
ance matrix described in the Appendix. With these as-
sumptions, the choice of symmetry or asymmetry and
the degree J of the approximation specify a particular
model of this class.

The GLS estimate of the curve g(x) for a given model
is defined as follows (e.g., see Seber and Wild 1989): Let

for a symmetric model; for an asymmetricb � {b , ...,b }0 J

model, let . To emphasize theb � {b , b ...b , b , ...,b }0 11 1J 21 2J

dependence on the unknown parameters m and b let

. Let D(m,b) be a vector of length L withg (m, b) � g(x )i i

the ith element equal to the difference . Last,f̂ � g (m, b)i i

let the quadratic form .T �1Q (m, b) � D(m, b) V D(m, b)
The GLS estimates and are the values of m and bˆm̂ b

that, among those values satisfying the range and mon-
otonicity constraints, minimize Q(m,b). The GLS crite-
rion takes the estimated covariance structure into ac-
count in deciding which curve best fits the observed s.f̂i

For example, GLS fits the curve more closely to estimates
with smaller variances. It is now useful to add a nor-
mality assumption justified, at least approximately, by
the transformation and the substantial number of ob-
servations underlying each estimate. Under the assump-
tion that is multivariate normal with mean gi(m,b) andf̂i

covariance matrix V, the log likelihood evaluated at m

and b is �Q(m,b)/2. In that case, the GLS estimates m̂

and are also maximum-likelihood estimates.b̂

Within the likelihood framework, Akaike’s (1974) in-
formation criterion (AIC), a model-selection technique,
can be used to select a specific curve under which to
estimate the mutation site. Adding parameters, even
meaningless ones, almost always increases the log like-
lihood and can never decrease it. However, such over-
parameterization can increase statistical variability,
yielding estimates worse than those produced by more-
parsimonious models. To avoid overfitting, AIC requires
each additional parameter to increase the log-likelihood
by at least one. In this setting, AIC is equivalent to min-
imizing , where p is the number of para-ˆˆQ (m, b) � 2p
meters in the model.

For CF, AIC chooses the asymmetric piecewise-linear
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Figure 3 Twice the log likelihood under the final model. Equiv-
alently, this is the least-squares curve, pictured upside down. The ver-
tical line (which in this case is broken) and the lower, thicker horizontal
crosspiece (represent, respectively, the location of D508 and the ap-
proximate extent of the CF gene. The upper, thinner horizontal line
intersects the log-likelihood curve at the critical values for the .05
significance test. All values of m for which the curve is above this line
are included in the 95% confidence interval (724.1, 1,039.9).

Figure 4 Alternative fitted curves. The unbroken line is the fitted
curve under the first-order symmetric model, and the broken line is
the fitted curve under the first-order asymmetric model and with in-
dependence being assumed. Both curves place the estimate near the
front of the horizontal crosspiece representing the extent of the CF
gene, well to the right of D508, which is shown by the vertical broken
line.

model (table 3). This model places the estimated gene
location at , only ∼10 kb away from D508m̂ � 892.6
(fig. 2). Confidence intervals for m are obtained by in-
verting a likelihood-ratio test, as described in the Ap-
pendix. For the CF data, the 95%, 90%, and 80% con-
fidence intervals for the gene location are (724.1,
1,039.9), (760.1, 1,002.7), and (782.6, 963.3), respec-
tively. Figure 3 shows the first of these intervals super-
imposed on the log-likelihood curve. An alternative
strategy is to start with a predetermined length and find
the corresponding interval and its achieved confidence
level. For example, the 50-kb interval (872.0, 922.0)
achieves a 54% confidence level and does, in fact, in-
clude the location of D508.

Undoubtedly, the right-hand side of the curve, with
only five marker loci, is less well estimated than the left-
hand side. In particular, because of the 650-kb gap be-
tween the 20th and 21st markers, there is almost no
evidence with regard to the curvature on the right. Al-
though it is almost impossible to distinguish between the
second-order asymmetric curve (fig. 2) and the first-order
model, the greatest deviation occurs within this unin-
formative gap. Because of the monotonicity constraint,
increasing the degree of the polynomial sometimes fails
to decrease . For CF, the curve under the first-ˆˆQ (m, b)
order model is the same regardless of whether the con-
straint is imposed. For higher-order models, the con-
straint excludes curves with implausible interpretations,
such as those that place the gene intersection at a point
of maximum transformed disequilibrium.

It is revealing to refit the data while modifying aspects

of the original analysis. Table 3 shows the effect that
the selected model has on the estimated location. The
estimates under asymmetric models are always near
D508, falling between 892.6 and 899.8. The estimates
under symmetric models are near the beginning of the
CF gene, between 790.0 and 796.0. If the correlation
structure is ignored as if the s were independent ob-f̂i

servations, then asymmetric models do produce esti-
mates similar to those of symmetric models (fig. 4).
When only the diagonal of the bootstrap covariance ma-
trix is used, the estimates under the asymmetric model
are 781.0, for , and 779.8, for . Previous ap-J � 1 J � 2
proaches that are equivalent to a symmetric, independ-
ence model obtained similar estimates (Terwilliger 1995;
Devlin et al. 1996; Xiong and Guo 1997). For CF, the
inclusion of asymmetry in the final model allows the
regression procedure to better exploit the correlation
structure. The fitted curve (fig. 2) can then roughly par-
allel the eight highly correlated estimates at loci 9–15
and 19.

In light of the CF results, some researchers might
choose to consider only asymmetric curves. Convincing
prior evidence that symmetry must hold is generally un-
likely, yet it may not always be possible to detect asym-
metry on the basis of the data; on the other hand, the
impact that this choice has on the location estimate
might be less when that is the case. An alternative might
be to lower the criterion for moving from symmetry to
asymmetry, although setting an appropriate level for that
criterion would take some experience.

In contrast, the transformation choice does not affect
the gene-location estimate very much. The other trans-
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formations that were considered, including all those in
table 2, estimate the gene location to be near D508,
between the 18th and 19th loci, under the asymmetric
model with or . The transformation doesJ � 1 J � 2
alter the confidence intervals, making them more con-
servative than intervals computed without a transfor-
mation. Because the transformation improves the fit of
the normal approximation, this change probably reflects
a more accurate, if less optimistic, assessment of the
information in the data.

Future Improvements

Undoubtedly, there are many possible refinements of
the methods described in this paper. Before mentioning
a few possibilities, I will review the three basic steps of
the estimation procedure. In the first step, the disequi-
librium parameter di is estimated for each locus. The
second step uses the bootstrap to explore the joint sam-
pling distribution of the estimates. The resulting infor-
mation is used to better implement the third step: fitting
the disequilibrium curve to the data.

For multiallelic marker loci, estimation of di becomes
more complicated. In particular, it is necessary to decide
which alleles are associated with the disease. Even if it
were possible, exhaustive enumeration of the marker al-
leles in the disease-mutation founders might not be the
best approach for mapping the gene location. That ap-
proach would leave di undefined at loci where every allele
appeared on at least one founder chromosome. Instead,
a better rule might attempt to identify only the alleles
present in the founders representing the majority of to-
day’s cases. This paper does not propose a specific rule
for deciding which alleles are disease associated at mul-
tiallelic loci. However, the impact of any such rule can
clearly be assessed by including it within the bootstrap
procedure.

Ideally, the resampling strategy of the bootstrap rep-
licates the data-collection strategy. If family data are
used, the chromosomes from each family should be re-
sampled as a single unit. Unfortunately, family infor-
mation for the CF data was unavailable. With such in-
formation, interesting comparisons could be made
between the empirical distributions—and the location
estimates—under alternative resampling schemes.

Currently, the method does not allow for disease mu-
tations at multiple sites. However, the model could be
generalized to express g(x) as a weighted average of sep-
arate curves, each with a distinct peak representing a
single mutation site. If the observed marker loci covered
the region well enough, it might be possible to estimate
such a model. More often, it would be difficult to dis-
tinguish the peaks, especially when they are close to each
other. Thus, it would be useful to explore the behavior
of the single-site estimate when multiple mutation sites
are, in fact, present.

Likelihood theory, as used in this analysis, encounters
certain limitations. For example, the likelihood-based
confidence intervals act as if the selected model is the
correct one, although there is no guarantee that the AIC
choice is optimal, let alone correct. Although such in-
tervals are standard in practice, they can be somewhat
narrower than is justified by the available information.
A second level of bootstrapping, which would replicate
the entire estimation process, might produce a more ac-
curate confidence interval for m. Unfortunately, imple-
menting this strategy is less straightforward than it
sounds, since there are several possible approaches, all
of which dramatically increase the required amount of
computation. In the meantime, likelihood-based inter-
vals are likely to achieve a reasonable degree of accuracy.

Discussion

The semiparametric linkage-disequilibrium mapping
method proposed in this paper pays as much attention
to the data as possible. The parametric part of the model
describes only the trend of disequilibrium about the gene
location. The bootstrap replaces additional explicit mod-
eling that would otherwise be required for the joint sam-
pling distribution of the disequilibrium estimates. This
strategy reduces the risk of overparameterization and
eliminates the need to depend on imprecise assumptions
or external estimates of specific population quantities.
On the basis of the fit to the data, a specific disequilib-
rium curve is chosen from among a class of plausible
alternatives. As a consequence, the final model for a
given data set will depend on the amount of data and
on the observed marker spacing, as well as on the pattern
of linkage disequilibrium in the population.

I have shown that varied sets of population assump-
tions lead to similar patterns of linkage disequilibrium.
In fact, linkage-disequilibrium models proposed else-
where also implicitly define a regression curve. For any
given method, the space of permissible regression curves
depends on which population quantities are externally
specified. Because the underlying curves have similar
shapes, it is not surprising that a variety of approaches
obtain similar gene-location estimates. For CF, the em-
pirical least-squares approach works particularly well.
The combined use of asymmetry and the covariance
structure substantially improves the location estimate in
this case.

There is a growing consensus that linkage-disequilib-
rium mapping is a useful tool for gene localization. The
CF example certainly reinforces that view, for this and
other methods. In particular, multilocus methods can
exploit the regression curve and the covariance structure
to obtain information that is inherently different from
the information contained in a single disequilibrium
value. However, the details of the CF data show that
real data can be very unlike ideal mathematical models.
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Thus, only experience can establish the general feasibility
of linkage-disequilibrium mapping.
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Appendix

Bias Correction

The bias of a parameter estimate is the amount by
which the expectation of the estimate differs from the
parameter. Thus, the bias of is . Theˆ ˆf(d ) E [f (d )] � f(d )i i i

bootstrap can be used to estimate and remove bias from
(Efron and Tibshirani 1993).ˆf(d )i

To estimate the bias, the B bootstrap data sets are
combined to form a single data set. For locus i, let ∗∗âi

be the allele that, in the combined data set, appears more
frequently among the normal chromosomes than among
the disease chromosomes. Let be the proportion of∗∗pi

disease chromosomes in the combined data set that carry
allele , and define similarly for the normal chro-∗∗ ∗∗â ri i

mosomes; then, the estimate for the combined data set
is . For a given transformation f, let∗∗ ∗∗ ∗∗d̂ � 1 � (p /r )i i i

the mean of the transformed bootstrap estimates at locus
i be

B ∗ˆ[ ]� f d (b)b�1 i—∗f � .i B

Then, the bootstrap estimate of the bias of isˆf(d )i
. For the transformed CF estimates, the boot-

—∗ ∗∗ˆf � f(d )i i

strap detects little bias. To remove bias, the estimated
bias is subtracted from , to give the bias-correctedˆf(d )i
estimate . Consequently, is an

—ˆ ˆ∗ ∗∗ˆ ˆf � f(d ) � [f � f(d )] fi i i i

approximately unbiased estimate of f(di).

Covariance Matrix

For L loci, the covariance matrix is computedL # L
as follows: The element in the ith row and jth column
of the matrix is the sample covariance of the transformed
bootstrap estimates and , given by∗ ∗ˆ ˆf (d ) f (d )i j

— —B ∗ ∗ ∗ ∗ˆ ˆ{ } { }[ ] [ ]� f d (b) � f f d (b) � fb�1 i i j j

.
B � 1

The ith diagonal element of this matrix is the bootstrap
estimate of variance for the transformed estimate at the
ith locus.

As a technical note, the covariance matrix used in GLS

must be positive definite (Seber and Wild 1989). Given
the large number of estimated covariances, it is not too
surprising that, if unmodified, the bootstrap covariance
matrix for the CF data is not positive definite. Multi-
plying the off-diagonal elements by , where d is a1 � d
small positive number, smooths the correlation structure,
making the matrix positive definite. Because very high
correlations can put strong constraints on the fitted line,
it is better to risk underestimation of the correlations,
in order to avoid overestimation of them. In effect, the
smoothing parameter d relaxes the correlation structure
in case some low-probability events, inconsistent with
the estimated covariance, have been missed in the sam-
ple. A rule of thumb is to set ,1/k 1/(m�n)d ≈ 2 � 2 (1 � .5 )
where k is the number of pairwise correlations above
.98 in absolute value. For the CF data, andk � 3 d �

were chosen. In general, d should be kept small,.02
subject to the following sensitivity diagnostic: For CF,
the final model was refitted for several values of d, to
evaluate its effect. For the range , the es-.002 X d X .2
timated gene location stayed between 890 and 900, in-
dicating a lack of sensitivity to this choice.

GLS Optimization

All programming was done in the statistical language
Splus. The routine “nlminb” was used to minimize the
quadratic form. Splus functions are available from the
author.

Although Q(m,b) is multimodal, it has a unique min-
imum within each interval . Thus, thex X m X xi i�1

global minimum is easily found by comparison of the
local minima obtained from separate optimization pro-
cedures conducted within each interval inside the range
constraint. Within an interval, absolute value signs in
Q(m,b) can be dropped, and the model becomes a con-
strained linear model. If an interval is such that few loci
lie to one side, there may not be unique estimates of m

and b, but the minimum value of Q(m,b) inside the in-
terval can still be found. If that value is the global min-
imum, then the estimate of m should be placed inside the
interval but should not be given an exact location. When

or , some partial derivatives are not con-m � x m � xi i�1

tinuous if the model is parameterized in terms of m. How-
ever, the partial derivatives are continuous if the model
is reparameterized in terms of z, where

x � x x � xi i�1 i�1 i
m � � sin (z) .

2 2

Evaluating the least-squares, or likelihood, surface for
m requires a second computational procedure. For each
location at which the likelihood surface is evaluated,
optimization is carried out over b, with the value of m

held fixed.
Penalty functions are used to enforce the monotonicity
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constraint. When the algorithm attempts to move to a
set of parameter estimates for which the corresponding
curve does not satisfy monotonicity, adding a penalty
function to Q(m,b) forces the algorithm to half-step until
the constraint is satisfied. When the algorithm is cur-
rently near a constraint boundary and attempts to cross
it, the numerical vector and matrix used to determine
the search direction are modified. This allows the al-
gorithm to search, if ncessary, along contraint
boundaries.

Confidence Intervals

Inverting the following likelihood-ratio test of the
gene location yields a confidence interval for m under
the final model. Let the null hypothesis be that m0, say,
is the true mutation site. Let be the value of b thatb̂(m)
minimizes Q(m,b) when the value of m is fixed. Let

be the percentile of a x2 distri-2x (1 � a) (1 � a)100th1

bution with 1 df. The likelihood-ratio test rejects the
null hypothesis at significance level a ifm � m0

2ˆ ˆ( )ˆQ[m , b(m )] � Q m, b x x (1 � a) .0 0 1

A confidence interval consists of the m(1 � a)100%
values not rejected by the likelihood-ratio test at signif-
icance level a. This is obtained from the least-squares
surface evaluated on a dense grid of points over the range
of permissible mutation sites. The resulting interval is
(mL, mU), where

′ ′ 2ˆ ˆ[ ][ ] { }ˆ ˆ( )( )m � max m:Q m , b m x Q m, b m �x (1 � a)L 1

for all and′m X m

′ ′ 2ˆ ˆ[ ][ ] { }ˆ ˆ( )( ) ( )m � min m:Q m , b m x Q m, b m �x 1 � aU 1

for all . The endpoints are the locations at which′m x m

the likelihood surface rises above the critical value of
the likelihood-ratio test. The resulting interval includes
all m accepted by the test (see fig. 2).
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